112 research outputs found

    Precipitant-Free Crystallization of Lysozyme and Glucose Isomerase by Drying

    Get PDF
    Protein crystallization is usually conducted by using precipitants, although the “salting-out” phenomenon is still unclear and complex. Moreover, the addition of precipitants sometimes results in irreversible disordered precipitation of protein molecules. Although precipitant-free lysozyme crystals obtained by centrifugal concentration showed significant changes in three-dimensional structure compared to the structure of salted-out crystals, it was rather difficult to mount crystals from a viscous dense liquid phase after centrifugal concentration, and the quality of the crystals often deteriorated during the mounting process. Here we present novel precipitant-free crystallization methods, which were effective for lysozyme and glucose isomerase. Tetragonal lysozyme crystals were successfully crystallized in a glass capillary simply by drying highly concentrated lysozyme solution in the presence of 0.01 M hydrochloric acid without using any precipitants. Glucose isomerase dissolved in ultra-pure water was also successfully crystallized in hanging drops by drying highly concentrated solution under low-humidity conditions. Oscillation images of the obtained crystals were safely collected without handling; they clearly indicated the crystals had a tetragonal form for lysozyme and an orthorhombic form for glucose isomerase, and their lattice parameters are similar to those of previously reported crystals obtained by salting-out methods

    ThicknessTool: automated ImageJ retinal layer thickness and profile in digital images

    Get PDF
    To develop an automated retina layer thickness measurement tool for the ImageJ platform, to quantitate nuclear layers following the retina contour. We developed the ThicknessTool (TT), an automated thickness measurement plugin for the ImageJ platform. To calibrate TT, we created a calibration dataset of mock binary skeletonized mask images with increasing thickness masks and different rotations. Following, we created a training dataset and performed an agreement analysis of thickness measurements between TT and two masked manual observers. Finally, we tested the performance of TT measurements in a validation dataset of retinal detachment images. In the calibration dataset, there were no differences in layer thickness between measured and known thickness masks, with an overall coefficient of variation of 0.00%. Training dataset measurements of immunofluorescence retina nuclear layers disclosed no significant differences between TT and any observer's average outer nuclear layer (ONL) (p = 0.998), inner nuclear layer (INL) (p = 0.807), and ONL/INL ratio (p = 0.944) measurements. Agreement analysis showed that bias between TT vs. observers' mean was lower than between any observers' mean against each other in the ONL (0.77 ± 0.34 µm vs 3.25 ± 0.33 µm) and INL (1.59 ± 0.28 µm vs 2.82 ± 0.36 µm). Validation dataset showed that TT can detect significant and true ONL thinning (p = 0.006), more sensitive than manual measurement capabilities (p = 0.069). ThicknessTool can measure retina nuclear layers thickness in a fast, accurate, and precise manner with multi-platform capabilities. In addition, the TT can be customized to user preferences and is freely available to download

    Quantum oscillations with magnetic hysteresis observed in CeTe3_{3} thin films

    Get PDF
    We have performed magnetotransport measurements in CeTe3_{3} thin films down to 0.2 K0.2~{\rm K}. It is known that CeTe3_{3} has two magnetic transitions at TN13 KT_{\rm N1} \approx 3~{\rm K} and TN21 KT_{\rm N2} \approx 1~{\rm K}. A clear Shubnikov-de-Haas (SdH) oscillation was observed at 4 K4~{\rm K}, demonstrating the strong two-dimensional nature in this material. Below TN2T_{\rm N2}, the SdH oscillation has two frequencies, indicating that the Fermi surface could be slightly modulated due to the second magnetic transition. We also observed a magnetic hysteresis in the SdH oscillation below TN1T_{\rm N1}. Especially, there is a unique spike in the magnetoresistance at B0.6 TB \approx 0.6~{\rm T} only when the magnetic field is swept from a high enough field (more than 2 T2~{\rm T}) to zero field.Comment: 5 pages, 4 figures, accepted for publication in Applied Physics Letter

    Quantum oscillations with magnetic hysteresis observed in CeTe3 thin films

    Get PDF
    We have performed magnetotransport measurements in CeTe3 thin films down to 0.2K. It is known that CeTe3 has two magnetic transitions at TN 1 approximate to 3K and TN 2 approximate to 1K. A clear Shubnikov-de-Haas (SdH) oscillation was observed at 4K, demonstrating the strong two-dimensional nature in this material. BelowTN 2, the SdH oscillation has two frequencies, indicating that the Fermi surface could be slightly modulated due to the second magnetic transition. We also observed a magnetic hysteresis in the SdH oscillation below TN 1. Specifically, there is a unique spike in the magnetoresistance at B approximate to 0.6T only when the magnetic field is swept from a high enough field (more than 2T) to zero field

    Shubnikov-de-Haas oscillation and possible modification of effective mass in CeTe3 thin films

    Get PDF
    Magnetoresistance measurements have been performed in CeTe3 thin film devices in a temperature range from 2.1 to 20 K up to 8 T. A clear Shubnikov-de-Haas oscillation was observed in the whole temperature range. The temperature dependence of the oscillation amplitude was found to deviate from the Lifshitz-Kosevich formula below the magnetic transition temperature at T-N1 approximate to 3 K. This indicates a significant interplay between the magnetic ordering and the conduction electrons, which could lead to a modification of the effective cyclotron mass. By analyzing the temperature dependence of the oscillation amplitude, we have estimated the effective mass, quantum lifetime and quantum mobility of the material both in the paramagnetic and antiferromagnetic states

    Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    Get PDF
    BACKGROUND: Recently it has been reported that, toll-like receptors (TLRs) are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS) via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. METHODS: Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis, respectively. Activation of nuclear factor (NF)-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP) kinase and interferon regulatory factor (IRF)-3 was detected by immunoblot analysis. RESULTS: Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. CONCLUSION: Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3

    Quantum critical behavior of the hyperkagome magnet Mn3CoSi

    Get PDF
    β-Mn-type family alloys Mn3TX (T = Co, Rh, and Ir; X = Si and Ge) have a three-dimensional antiferromagnetic (AF) corner-shared triangular network, i.e., the hyperkagome lattice. The antiferromagnet Mn3RhSi shows magnetic short-range order over a wide temperature range of approximately 500 K above the Néel temperature TN of 190 K. In this family of compounds, as the lattice parameter decreases, the long-range magnetic ordering temperature decreases. Mn3CoSi has the smallest lattice parameter and the lowest TN in the family. The quantum critical point (QCP) from AF to the quantum paramagnetic state is expected near a cubic lattice parameter of 6.15 Å. Although the Néel temperature of Mn3CoSi is only 140 K, the emergence of the quantum critical behavior in Mn3CoSi is discussed. We study how the magnetic short-range order appears in Mn3CoSi by using neutron scattering, μSR, and bulk characterization such as specific heat capacity. According to the results, the neutron scattering intensity of the magnetic short-range order in Mn3CoSi does not change much at low temperatures from that of Mn3RhSi, although the μSR short-range order temperature of Mn3CoSi is largely suppressed to 240 K from that of Mn3RhSi. Correspondingly, the volume fraction of the magnetic short-range order regions, as shown by the initial asymmetry drop ratio of μSR above TN, also becomes small. Instead, the electronic-specific heat coefficient γ of Mn3CoSi is the largest in this Mn3T Si system, possibly due to the low-energy spin fluctuation near the quantum critical point

    シシツ テイカ リョウホウ ニヨル ケイドウミャク プラーク アンテイカ ノ ヒョウカ : チョウオンパ integrated backscatter オ モチイタ カラー マッピング システム ノ カイハツ ト リンショウ オウヨウ

    Get PDF
    Background : The carotid plaque vulnerability is related to myocardial and cerebral infarction. We intended to develop an imaging system which enables to visualize tissue characteristics in the carotid plaques based on ultrasound integrated backscatter(IB). And to test its clinical efficacy, effect of the statin therapy on the plaques was evaluated with our software. Methods and Results : Carotid ultrasound examination was performed and ultrasonographic RAW data of the plaques were obtained from8patients undergoing carotid artery endarterectomy. Tissue characteristics in the plaques of resected examples were compared with preoperative ultrasonic images and the tissue IB values corresponding to the specimens were determined for developing our imaging system. Using this system, Color-coded maps of plaques in the three patients were constructed before and after lipid lowing therapy. We could demonstrate that lipid fraction in each plaque decreased and fibrous or calcification fraction increased in the follow-up study. Conclusions : Changes in histology of carotid plaques by statin could visualized with our imaging system. This technique may become a useful tool for the management of atherosclerosis
    corecore